Fourier-Based Fast Multipole Method for the Helmholtz Equation

نویسندگان

  • Cris Cecka
  • Eric Darve
چکیده

The multilevel fast multipole method (MLFMM) is an algorithm that has had great success in reducing the computational time required to find the solution to the Galerkin boundary integral form of the Helmholtz equation. We present a new formulation of the MLFMM using Fourier basis functions rather than spherical harmonics in order to accelerate and simplify the time-critical stages of the algorithm. With modifications to the transfer function in the precomputation stage of the MLFMM, the interpolation and anterpolation algorithms become straightforward applications of FFT interpolations only. Using spectral methods, constructive algorithms are derived to determine a near-optimal quadrature for a given level in the algorithm and an a-priori estimate of the integration error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Based Fast Multipole Method for The

The fast multipole method (FMM) has had great success in reducing the computa4 tional complexity of solving the boundary integral form of the Helmholtz equation. We present a 5 formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. 6 By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of 7 the algorithm are...

متن کامل

Fast convolution with the free space Helmholtz Green's function

We construct an approximation of the free space Green’s function for the Helmholtz equation that splits the application of this operator between the spatial and the Fourier domains, as in Ewald’s method for evaluating lattice sums. In the spatial domain we convolve with a sum of decaying Gaussians with positive coefficients and, in the Fourier domain, we multiply by a band-limited kernel. As a ...

متن کامل

Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions

This paper describes a simple version of the Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. We discuss both the underlying theory and some of the practical aspects of its implementation to allow for stability and high accuracy at all wavelengths.

متن کامل

An Implementation of Low-Frequency Fast Multipole BIEM for Helmholtz’ Equation on GPU

Acceleration of the fast multipole method (FMM), which is the fast and approximate algorithm to compute the pairwise interactions among many bodies, with graphics processing units (GPUs) has been investigated for the last couple of years. In view of the type of kernel functions, the non-oscillatory kernels (especially, the Laplace kernel) were studied by many researchers (e.g. Gumerov), and the...

متن کامل

Fast Multipole Boundary Element Method for 2-D Helmholtz Equation Problems and Its Error Analysis ?

In this paper, a kind of Fast Multipole Boundary Element Method (FM-BEM) based on series form expansion is presented to solve two-dimensional (2-D) Helmholtz equation problems. A theorem of multipole expansion is derived and proved for the fundamental solution, which demonstrates the error source and can be widely used in 2-D electromagnetics and acoustics problems. The truncation error is anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013